Effect of Short-term O2 Contamination on Top-of-line Corrosion in CO2 Pipelines

HOU Yucen, LIANG Peinan, FENG Zhaoyuan, QI Liang, XU Yunze, WANG Mingyu

Equipment Environmental Engineering ›› 2026, Vol. 23 ›› Issue (1) : 97-105.

PDF(12675 KB)
PDF(12675 KB)
Equipment Environmental Engineering ›› 2026, Vol. 23 ›› Issue (1) : 97-105. DOI: 10.7643/ issn.1672-9242.2026.01.011
Ships and Marine Engineering Equipment

Effect of Short-term O2 Contamination on Top-of-line Corrosion in CO2 Pipelines

  • HOU Yucen1, LIANG Peinan1, FENG Zhaoyuan2, QI Liang2, XU Yunze1,3, WANG Mingyu1*
Author information +
History +

Abstract

To address the top-of-the-line corrosion (TLC) phenomenon, the work aims to systematically investigate the dynamic corrosion mechanisms of carbon steel under condensate droplets in CO2-O2 mixed environments. The wire beam electrode (WBE) technique was employed to continuously monitor the dynamic evolution of surface macro-cell currents. Simultaneously, the electrochemical impedance spectroscopy (EIS) was applied to analyze localized micro-cell corrosion variations at representative positions. When the environment shifted from CO2 to O2, the macro-cell currents on the WBE surface increased sharply, accompanied by redistribution of anodic and cathodic areas and significant localization of anodic currents. EIS analysis revealed that the micro-cell corrosion behavior was predominantly governed by the synergistic effects of corrosion product film formation and oxygen diffusion dynamics. The findings indicate that short-term O2 contamination significantly accelerates the macro-cell corrosion process at the pipeline's top-of-the-line area in CO2 environments. Furthermore, the study identifies an increased pitting corrosion risk in the film-free areas along the droplet's inner edge.

Key words

top-of-line corrosion (TLC) / O2 contamination / CO2 corrosion / wire beam electrode (WBE) / localized corrosion / macro-cell current / micro-cell current

Cite this article

Download Citations
HOU Yucen, LIANG Peinan, FENG Zhaoyuan, QI Liang, XU Yunze, WANG Mingyu. Effect of Short-term O2 Contamination on Top-of-line Corrosion in CO2 Pipelines[J]. Equipment Environmental Engineering. 2026, 23(1): 97-105 https://doi.org/10.7643/ issn.1672-9242.2026.01.011

References

[1] 刘梁华, 张世富.海底管道发展现状浅述[J].中国储运, 2011(11): 108-109.
LIU L H, ZHANG S F.Brief Introduction to the Development Status of Submarine Pipeline[J].China Storage & Transport, 2011(11): 108-109.
[2] KAISER M J.A Review of Deepwater Pipeline Construction in the U.S.Gulf of Mexico-Contracts, Cost, and Installation Methods[J].Journal of Marine Science and Application, 2016, 15(3): 288-306.
[3] 孙宇, 常炜, 杨翔堃, 等.海底管道腐蚀防护状态检测方法[J].装备环境工程, 2021, 18(1): 104-109.
SUN Y, CHANG W, YANG X K, et al.A Detection Method for Corrosion Prevention Status of Submarine Pipelines[J].Equipment Environmental Engineering, 2021, 18(1): 104-109.
[4] 吾兰·巴克达什, 刘建国, 李自力, 等.油气输送管道多相流磨损腐蚀的研究现状与进展[J].装备环境工程, 2017, 14(3): 112-116.
WULAN B K D S, LIU J G, LI Z L, et al.Research Status and Progress in Erosion-Corrosion of Oil and Gas Transmission Pipelines in Multiphase Flow[J].Equipment Environmental Engineering, 2017, 14(3): 112-116.
[5] 张伟刚, 赵会军, 周立辉, 等.湿气管线的顶部腐蚀研究进展[J].腐蚀科学与防护技术, 2015, 27(5): 492-496.
ZHANG W G, ZHAO H J, ZHOU L H, et al.Research Progress on Top Corrosion of Wet Gas Pipeline[J].Corrosion Science and Protection Technology, 2015, 27(5): 492-496.
[6] GUNALTUN Y.M., SUPRIYATMAN D., ACHMAD J.Top-of-Line Corrosion in Gas Lines Confirmed by Condensation Analysis[J].Oil & Gas Journal, 1999, 97(28): 64-72.
[7] LI J H, XIE F, WANG D, et al.Corrosion of X80 Steel in a Wet Gas Pipeline under the Top-of-the-Line Environment[J].Journal of Electroanalytical Chemistry, 2022, 912: 116269.
[8] FOLENA M C, BARKER R, PESSU F, et al.CO2 Top-of-Line-Corrosion; Assessing the Role of Acetic Acid on General and Pitting Corrosion[J].Corrosion, 2021, 77(3): 298-312.
[9] AL-MOUBARAKI A H, OBOT I B.Top of the Line Corrosion: Causes, Mechanisms, and Mitigation Using Corrosion Inhibitors[J].Arabian Journal of Chemistry, 2021, 14(5): 103116.
[10] SHEN M, FURMAN A, KHARSHAN R, et al.Development of Corrosion Inhibitors for Prevention of Top of the Line Corrosion (TLC)[C]//Corrosion 2013.Orlando: NACE International, 2013.
[11] 万泊宏.渤海某油田海底管道腐蚀防护用缓蚀剂的开发与应用[J].石油化工腐蚀与防护, 2021, 38(6): 22-25.
WAN B H.Development and Application of Corrosion Inhibitors for Submarine Pipelines at Oilfield in Bohai Sea[J].Corrosion & Protection in Petrochemical Industry, 2021, 38(6): 22-25.
[12] SINGER M.Top-of-the-Line Corrosion[M]//Trends in Oil and Gas Corrosion Research and Technologies.Amsterdam: Elsevier, 2017: 385-408.
[13] 蒋秀, 屈定荣, 刘小辉.湿气管线的顶部腐蚀研究概况[J].中国腐蚀与防护学报, 2011, 31(2): 86-90.
JIANG X, QU D R, LIU X H.Research Development of Top of Line Corrosion (TlC) in Wet Natural Gas Pipelines[J].Journal of Chinese Society for Corrosion and Protection, 2011, 31(2): 86-90.
[14] BARKER R, BURKLE D, CHARPENTIER T, et al.A Review of Iron Carbonate (FeCO3) Formation in the Oil and Gas Industry[J].Corrosion Science, 2018, 142: 312-341.
[15] VITSE F, NEŠIĆ S, GUNALTUN Y, et al.Mechanistic Model for the Prediction of Top-of-the-Line Corrosion Risk[J].Corrosion, 2003, 59(12): 1075-1084.
[16] 封子艳, 崔铭伟, 高志亮.CO2环境中管内外温差对X65湿气管线顶部腐蚀的影响[J].天然气化工(C1化学与化工), 2021, 46(5): 74-80.
FENG Z Y, CUI M W, GAO Z L.Effect of Temperature Difference Inside and Outside the Pipe on Top Corrosion of X65 Wet Gas Pipeline in CO2 Environment[J].Natural Gas Chemical Industry, 2021, 46(5): 74-80.
[17] WANG M Y, TAN M Y, ZHU Y S, et al.Probing Top-of-the-Line Corrosion Using Coupled Multi-Electrode Array in Conjunction with Local Electrochemical Measurement[J].npj Materials Degradation, 2023, 7: 16.
[18] WANG M Y, ZHAO X Y, GAO S, et al.Visualizing and Understanding Corrosion Evolution beneath a Condensed Droplet Using the Multi-Electrode Array[J].Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2024, 684: 133252.
[19] SUN J B, SUN C, ZHANG G A, et al.Effect of O2 and H2S Impurities on the Corrosion Behavior of X65 Steel in Water-Saturated Supercritical CO2 System[J].Corrosion Science, 2016, 107: 31-40.
[20] WANG W H, SHEN K L, TANG S, et al.Synergistic Effect of O2 and SO2 Gas Impurities on X70 Steel Corrosion in Water-Saturated Supercritical CO2[J].Process Safety and Environmental Protection, 2019, 130: 57-66.
[21] LIN X Q, LIU W, WU F, et al.Effect of O2 on Corrosion of 3Cr Steel in High Temperature and High Pressure CO2-O2 Environment[J].Applied Surface Science, 2015, 329: 104-115.
[22] HUA Y, BARKER R, NEVILLE A.The Effect of O2 Content on the Corrosion Behaviour of X65 and 5Cr in Water-Containing Supercritical CO2 Environments[J].Applied Surface Science, 2015, 356: 499-511.
[23] ROSLI N R.The Effect of Oxygen in Sweet Corrosion of Carbon Steel for Enhanced Oil Recovery Applications[D].Ohio: Ohio University, 2015.
[24] ROSLI N R, CHOI Y S, YOUNG D.Impact of Oxygen Ingress in CO2 Corrosion of Mild Steel[C]//Corrosion 2014.San Antonio: NACE International, 2014.
[25] HE L M, ZHANG Q L, CHEN W B, et al.Unraveling Short-Term O2 Contamination on under Deposit Corrosion of X65 Pipeline Steel in CO2 Saturated Solution[J].Corrosion Science, 2024, 233: 112113.
PDF(12675 KB)

Accesses

Citation

Detail

Sections
Recommended

/